PCI Express 3.0CEM Stressed Eye Calibration and Receiver Testing

Methods of Implementation using Tektronix BERTScope BSA85C Analyzer, CR125A Clock Recovery, DPP125B De-Emphasis Processor, and Series 70000 Real-Time Oscilloscope

14 June 2011, Version 1.0

55W-27105-0

Copyright ©Tektronix. All rights reserved. Licensed software products are owned by Tektronix and are protected by United States copyright laws and international treaty provisions.

Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specifications and price change privileges reserved.

TEKTRONIX, TEK, BERTScope, and RT-Eye are registered trademarks of Tektronix, Inc.

Contacting Tektronix

Tektronix, Inc.

14200 SW Karl Braun Drive or P.O. Box 500 Beaverton, OR 97077 USA

Table of Contents

1	Ove	erview	8
2	Equ	upment and Software Requirements	9
	2.1	BSA85C Bit Error Ratio Analyzer	9
	2.2	CR125A Clock Recovery Instrument	9
	2.3	DPP125B Digital Pre-Emphasis Processor	9
	2.4	PCISIG Compliance Boards	10
		2.4.1 PCISIG Compliance Base Board (CBB), Main	10
		2.4.2 PCISIG Compliance Base Board (CBB), Riser	11
		2.4.3 PCISIG Compliance Load Board (CLB)	12
	2.5	Real-Time Oscilloscope	12
	2.6	PCISIG SIGTEST Analysis Software	12
	2.7	DMI Combiner	13
	2.8	ATX Power Supply	13
	2.9	Cables	13
	2.10)Tx Repeater	14
3	Rec	eiver Jitter Tolerance Test	15
	3.1	Add-In Card Testing	15
		3.1.1 Add-In Card Test Equipment Connections	15
	3.2	Host Testing	17
		3.2.1 Method 1: Manual Loopback Test Equipment Connections	18
		3.2.2 Method 2: Pattern-Initiated Loopback Test Equipment Connections	19
	3.3	Select Test Configuration	21
	3.4	Loopback Initiation	21
		3.4.1 Background	21
		3.4.2 Load Loopback A/B Pattern	22
		3.4.3 Initiate Loopback	23
		3.4.4 Check Detector Synchronization	24
	3.5	Loopback Tips	24
	3.6	BER Testing	25
4	Арр	pendix A, Stressed Eye Calibration	26
	4.1	Set DPP Clock to Data Skew	26
		4.1.1 Connection and Configuration	26
	4.2	SJ and DPP Amplitude Calibration	29
		4.2.1 Required Equipment	29
		4.2.2 Test Equipment Connections	29
	4.3	Calibrate DPP Output Amplitude	30
	4.4	Calibrate Sinusoidal Jitter (SJ)	33
	4.5	Calibrate the Stressed Eye using SIGTEST on the RT Scope	35
		4.5.1 Amplitude Calibration	35
	4.6	Calibrate Random Jitter (RJ)	41
	4.7	Calibrate Differential Mode Interference.	43
		4.7.1 Configuration for Differential Mode Interference Calibration	43
	4.8	Calibrate Sinusoidal Interference	44

	4.9 Eye Height and Eye Width Calibration	46
	4.9.1 Configuration for Host (System) Calibration of Eye Height/Width	46
	4.9.2 Equipment Setup for AIC Eye Height/Width Calibration	47
	4.9.3 Eye Height/Width Calibration Procedure	47
	4.10 Create Calibrated Configuration File	49
5	Appendix B: Optional 100 MHz Multiplier Configuration	50
	5.1 Equipment Configuration	50
	5.2 Equipment Settings	50
6	Appendix C: Abbreviations and Acronyms	51

List of Figures

Figure 1: REPTScope RSA85C Bit Error Patio Analyzer	0
Figure 2: DEPTScope CP125A Clock Pocovery Instrument	
Figure 2: BERTScope DPD125R Digital Pre Emphasis Processor	9
Figure 4: PCISIC Compliance Base Board (CBB) Main	
Figure 4: PCISIC Compliance Base Board (CBB), Main	10
Figure 5: PCISIC Compliance Dase Doard (CLD), Risel	11
Figure 0. PCISIC Compliance Load Board (CLB)	12
Figure 9: ATX Compliant Power Supply	
Figure 8. ATA-Compliant Fower Supply	13
Figure 9. Matched Fan SMA (male) – SMF (lemale) Cables	13
Figure 10. PCIe 1X Repeater	
Figure 11: Add-III Card Connection Diagram (Manual Loophook)	13
Figure 12: Host Connection Diagram (Natural Loopback)	1/
Figure 15. Host Connection Diagram (Pattern-Higgered Loopback)	
Figure 14: Select BERTScope Analyzer Configuration	
Figure 15: Set BSA85C Generator to Track Detector User Pattern	
Figure 16: Load Modified Compliance Pattern Into Generator	
Figure 17: Page Switch to Toggie Loopback Pattern	
Figure 18: Auto Align to Optimize Detector Sample Point	
Figure 19: Check that Detector is in Sync	
Figure 20: Reset Detector Results	
Figure 21: Click the Run Button to Start Test	
Figure 22: DPP Timing Calibration Connections	
Figure 23: Set Stress Levels	
Figure 24: Set Generator Delay	
Figure 25: Find Optimum Delay	
Figure 26: Stress Timing Configuration	
Figure 27: Set Internal Synthesizer	
Figure 28: Load DPP Pattern Preset 4	
Figure 29: Set Bandwidth	
Figure 30: Set Average Acquisition	
Figure 31: Set for Mean Average Voltage Measurement	
Figure 32: Open DPP Output Voltage Control	
Figure 33: DPP Amplitude Measured at 799 mV using Real-Time Oscilloscope	
Figure 34: Turn Off Jitter Sources	
Figure 35: Load DPP Pattern Preset 4	
Figure 36: Set Record Length and Sample Rate	
Figure 37: Adjust Oscilloscope Vertical Scale	
Figure 38: View of Waveform for Analysis	

Figure 39:	Save the Baseline Waveform	37
Figure 40:	Locate and Load the Saved Waveform File	38
Figure 41:	Select Pattern File and Initiate Test	39
Figure 42:	Baseline TJ Measured at 18.2 ps	39
Figure 43:	TJ at 30.4 ps	40
Figure 44:	Set Record Length and Sample Rate	41
Figure 45:	Setup for Differential Mode Calibration	43
Figure 46:	Set Average Acquisition	44
Figure 47:	Set for Peak-to-Peak Voltage Measurement	44
Figure 48:	Measure Average Peak-to-Peak Voltage	45
Figure 49:	Equipment Setup for Host (System) Eye Height/Width Calibration	46
Figure 50:	Equipment Setup for AIC Eye Height/Width Calibration	47
Figure 51:	Transition Eye Height and Non-Transition Eye Height	48
Figure 52:	Two CR Units Configured as 100 MHz to 8 GHz Multiplier	50

Revision History

Version	Date	Summary of Changes
1.0	14 June 2011	Initial Release

1 Overview

This document provides procedures for PCI Express Generation 3.0 CEM Receiver testing using Tektronix BERTScope instruments. The procedures cover testing of both Add-In Cards and Host devices, in accordance with the PCI Express Generation 3.0 Card Electro-Mechanical (CEM) specification requirements. These tests utilize standard compliance test boards available from the PCISIG organization.

In addition, Appendix A of this document contains procedures for calibrating the test signal stressed eye using a Real-Time Oscilloscope and SIGTEST signal analysis software.

2 Equipment and Software Requirements

2.1 BSA85C Bit Error Ratio Analyzer

The BERTScope BSA85C Bit Error Ratio Analyzer provides test and calibration data patterns, and all five jitter sources required for CEM testing. Option STR (Stressed Eye) is required for CEM receiver testing.

Figure 1: BERTScope BSA85C Bit Error Ratio Analyzer

2.2 CR125A Clock Recovery Instrument

The BERTScope CR125A Clock Recovery instrument is used to recover a synchronous clock from the Tx data retransmitted from the DUT. The recovered clock may also be used as a synchronous full rate clock input to the pattern generator in cases where a full rate synchronous clock is not available from the DUT. The instrument allows full control of parameters including loop bandwidth, peaking/damping, and roll-off.

Figure 2: BERTScope CR125A Clock Recovery Instrument

2.3 DPP125B Digital Pre-Emphasis Processor

The BERTScope Digital Pre-emphasis Processor DPP125B takes in single-ended data and clock inputs and conditions the signal by adding controllable amounts of pre-emphasis.

Figure 3: BERTScope DPP125B Digital Pre-Emphasis Processor

2.4 PCISIG Compliance Boards

PCI Express Generation 3.0 Compliance Boards are available from the PCISIG, <u>www.pcisig.com</u>.

Three boards are necessary for both Add-in Card and Host testing, as shown below.

2.4.1 PCISIG Compliance Base Board (CBB), Main

The Main Compliance Base Board (CBB) is used for in conjunction with Compliance Base Board Riser for testing Add-in Cards (AIC). For AIC testing, the Main CBB requires that power be supplied from a standard ATX-compliant PC power supply.

Figure 4: PCISIG Compliance Base Board (CBB), Main

- NOTE:
- For stress calibration, power-in and 100 MHz reference are not required.

2.4.2 PCISIG Compliance Base Board (CBB), Riser

The CBB riser is used for AIC testing in conjunction with the CBB Main board. Lane 0 Rx (In) connections to the CBB Riser are indicated below. The CBB Riser also provides the additional channel path to meet the ISI requirements of the PCIe Gen 3 "Long Path."

Figure 5: PCISIG Compliance Base Board (CBB), Riser

2.4.3 PCISIG Compliance Load Board (CLB)

The Compliance Load Board is connected to the PCIe slot of the Host under test, and provides a means for Rx and Tx connections to the Host.

Figure 6: PCISIG Compliance Load Board (CLB)

2.5 Real-Time Oscilloscope

A Real-Time Oscilloscope is used for calibration of the PCIe Gen 3 stress levels. The procedures detailed in this MOI are based on the use of a Tektronix DPO/DSA70000, MSO70000Series real-time oscilloscope. The Oscilloscope captures critical signal information with a four-channel system bandwidth of 20 GHz, combined with high waveform capture capability. Note that jitter analysis requires that SIGTEST software be installed on the oscilloscope, as described below.

Figure 7: DPO/DSA70000, MSO70000 Real-Time Oscilloscope

2.6 PCISIG SIGTEST Analysis Software

SIGTEST software is required for CEM stress calibration. It is to be installed on the Real-Time Oscilloscope used for calibration.

SIGTEST software is available directly from the PCISIG, and may be downloaded at: <u>http://www.pcisig.com/specifications/pciexpress/compliance/compliance_library</u>.

2.7 DMI Combiner

Differential-Mode Interference (DMI) is added to the stressed Rx test pattern as required by the CEM test specification. When using the single-ended Sinusoidal Interference (SI) output of the BERTScope Analyzer to meet this requirement, the following components can be configured to provide the required DMI:

- A Balun (e.g., Narda 4346) to convert the single-ended SI output to a differential signal
- Two Couplers (e.g., RF Lambda RFDC5M18G10)

2.8 ATX Power Supply

An ATX-compliant power supply is used to provide power to the Compliance Base Board for Add-In Card (AIC) testing.

Figure 8: ATX-Compliant Power Supply

2.9 Cables

For connection to the SMP connectors found on the PCISIG Compliance Boards, three pairs of matched SMA (male) – SMP (female),50 Ohm coaxial cables are required for AIC testing. Host testing and calibration require only two pairs of these cables. Cables pictured are Rosenberger cable assembly 101462.

Figure 9: Matched Pair SMA (male) – SMP (female) Cables

In addition, multiple SMA (male) – SMA(male) cables of various lengths are required, as indicated in the equipment setup diagrams for each test and calibration configuration.

2.10 Tx Repeater

In situations where the eye diagram of Tx signal from the DUT is not sufficiently open to provide reliable BER testing of the Tx data pattern – typically in Host testing – it is recommended to add a repeater circuit in the Tx return path.

A suitable repeater is available as an Evaluation Board assembly from National Semiconductor, Part Number DS80PCI800EVK: <u>http://www.national.com/pf/DS/DS80PCI800.html#Overview</u>

Figure 10: PCIe Tx Repeater

3 Receiver Jitter Tolerance Test

3.1 Add-In Card Testing

Figure 11: Add-In Card Connection Diagram

3.1.1 Add-In Card Test Equipment Connections

a. **Connect** BSA Data Out+ to DPP Data In. The cable length should be approximately 12".

- b. **Connect** BSA Subrate Clock Out to DPP Clock In. The cable length should be approximately 72".
- c. **Connect** the differential Tx output from the CBB-Main (Tx Lane 0) connectors to CR Data– In using a matched SMA to SMP cable set.
- d. **Connect** CR Data Out (+/-) to BSA Detector Data In (+/-) using a matched SMA to SMA cable set.
- e. **Connect** CR Subrate Clock Out to BSA Detector Clock In. This SMA to SMA cable should be as short as possible.
- f. **Connect** the DPP Data Out (+/–) to the input of the SI combiner (+/–) using a matched SMA to SMA cable set.
- g. **Connect** the SI Combiner Out (+/–) to the Rx Lane 0 input on the CBB-Riser card using a matched SMA to SMP cable set.
- h. **Connect** the SI output on the rear connector panel of the BSA to the SI In (Balun input) of the SI Combiner.
- i. **Connect** the BSA Clock Out (+/-) to Ref Clk In on the CBB-Main card using a matched SMA to SMP cable set.
- j. **Connect** the ATX power supply to the power input connector on the CBB-Main board.
- k. **Insert** the DUT into the PCIe slot on the CBB-Main board.
- *NOTE: The outputs of the DPP unit are AC-coupled, and therefore do not require DC blocks.*

Figure 12: Host Connection Diagram (Manual Loopback)

NOTE: • The Compliance Load Board (CLB) is shown connected in the single lane (X1) configuration. If alternate CLB configurations are used (X4, X8, X16), always connect to the Lane 0 Rx and Tx connectors for the configuration being used.

3.2.1 Method 1: Manual Loopback Test Equipment Connections

- a. **Connect** BSA Data Out+ to DPP Data In. The cable length should be approximately 12".
- b. **Connect** BSA Subrate Clock Out to DPP Clock In. The cable length should be approximately 72".
- c. **Insert**the CLB card into the PCI connector on the Host (DUT).
- d. **Connect** CR Data Out (+/-) to BSA Detector Data In (+/-) using a matched SMA to SMA cable set.
- e. **Connect** CR Subrate Clock Outto BSA Detector Clock In. This SMA to SMA cable should be as short as possible.
- f. Connect CR Clock Outto BSA Generator External ClockIn.
- g. **Connect** the DPP Data Out (+/–) to the input of the SI combiner (+/–) using a matched SMA to SMA cable set.
- h. **Connect** the SI combiner (+/–) out to the Rx Lane 0 input on the CBB-Riser card using a matched SMA to SMP cable set.
- i. **Connect** the SI Output on the rear connector panel of the BERTScope Analyzer to the SI input (Balun input) of the SI Combiner.
- j. **Connect** the differential Tx output from the CLB (Tx Lane 0) connectors to Repeater Data In using a matched SMA to SMP cable set.
- k. **Connect** the differential Tx output from the Repeater (+/–) to the CR Data In (+/–) using a matched SMA to SMA cable set.
- 1. **Connect** CR Data Out (+/-) to BSA Detector Data In (+/-) using a matched SMA to SMA cable set. This cable set should be at least 39" long.
- m. **Connect** The differential Tx output from the CBB-Main (Tx Lane 0) connectors to CR Data In using a matched SMA to SMP cable set.
- n. **Connect**3.3 VDC to the power input connector of the Repeater board.

Figure 13: Host Connection Diagram (Pattern-Triggered Loopback)

- 3.2.2 Method 2: Pattern-Initiated Loopback Test Equipment Connections
 - a. **Connect** BSA Data Out+ to DPP Data In. The cable length should be approximately 12".
 - b. **Connect** BSA Subrate Clock Out to DPP Clock In. The cable length should be approximately 72".
 - c. **Insert**the CLB card into the PCI connector on the Host (DUT).
 - d. Connect the CLB 100 MHz Clock Out to the Multiplier Clock In (+/-)

- e. **Connect**one output of the Multiplier 8 GHz Clock Out to the BSA Detector Clock In.
- f. **Connect**the second the Multiplier 8 GHz Clock Out to the BSA Generator External Clock In.
- g. **Connect** the DPP Data Out (+/-) to the input of the SI combiner (+/-) using a matched SMA to SMA cable set.
- h. **Connect** the SI combiner (+/–) out to the Rx Lane 0 input on the CBB-Riser card using a matched SMA to SMP cable set.
- i. **Connect** the SI Output on the rear connector panel of the BERTScope Analyzer to the SI input (Balun input) of the SI Combiner.
- j. **Connect** the differential Tx output from the CLB (Tx Lane 0) connectors to Repeater Data In using a matched SMA to SMP cable set.
- k. **Connect** the differential Tx output from the Repeater (+/–) to the CR Data In (+/–) using a matched SMA to SMA cable set.
- 1. **Connect** CR Data Out (+/-) to BSA Detector Data In (+/-) using a matched SMA to SMA cable set. This cable set should be at least 39" long.
- m. **Connect** The differential Tx output from the CBB-Main (Tx Lane 0) connectors to CR Data In using a matched SMA to SMP cable set.
- n. **Connect** 3.3 VDC to the power input connector of the Repeater board.

3.3 Select Test Configuration

Load the BERTScope configuration file that was saved at the end of the calibration procedure detailed in Appendix A.

a. From the BERTScope Analyzer local control interface, **select**Config→Restore Configuration:

Con	Help on Configurations?				
He	Run Duration Clear Duration				
Shutz	Save Configuration Restore Configuration Select Startup Cooligeration	4			
10 10	GUI Lockout	Look in: Conf	igurations	• + E č	× 1
		Ba.cfg BRAlyzer25000. DP HR2 CAL.cfg Factory.cfg OLD_SHUTDOW	cfg I N.CFG	PCLe3_Calbrated Shutdown1.cfg Shutdown2.cfg Shutdown.cfg test1.cfg test.cfg	Config (05_31_
		File name: PCI	e3_Calibrated Config 05_3	1_2011.cfg	Open
		Files of type: CFG Default Directory	G (* cfg) On Screen Keyboard se	rer launching the keyboa lect the File name edit bu	Cancel rd, please ax to enter keys

Figure 14: Select BERTScope Analyzer Configuration

3.4 Loopback Initiation

3.4.1 Background

Loopback may be initiated in one of two ways:

- 1. If available, the unit may be placed into loopback manually via direct access to the appropriate internal configuration registers on the DUT.
- 2. If manual loopback initiation is not available, loopback may be initiated by sending the loopback pattern to the DUT, as outlined below.

3.4.2 Load Loopback A/B Pattern

Step 1. Set the BSA Generator to Track Det User Pattern

- a. **Select** the Generator View (View \rightarrow Generator)
- b. **Click** on the Generator buttonin the center of the display
- c. Select"User Pattern" from the pop-up menu
- d. Check "Track Det User Pattern"

Figure 15: Set BSA85C Generator to Track Detector User Pattern

Step 2. Load the PCIe_8G_BruteForce_Loopback_TestSpec(C).ram pattern into the Generator

- a. **Select** the Generator View (View \rightarrow Generator)
- b. **Click** on the Generator icon
- c. **Select** User Pattern \rightarrow Load User File from the pop-up menu
- d. **Open** the PCI Express folder in the Windows dialog
- e. **Select** the PCIe_8G_BruteForce_Loopback_TestSpec(C).ram
- f. **Click** "Open" to load the pattern.

Figure 16: Load Modified Compliance Pattern into Generator

- *NOTE: At this stage, the Generator user pattern memory will contain a two-page pattern, where:*
 - Page A contains the Modified Compliance Pattern
 - Page B contains the loopback patterns
 - In the pattern file, PAGE END splits the two pages
 - The Detector user pattern memory will be loaded with the Modified Compliance Pattern only (Page A).

3.4.3 Initiate Loopback

If loopback cannot be initiated manually, toggle the loopback pattern to put the DUT into loopback mode:

• In the Generator view, **click** the Page Switch button. This will cause the generator pattern to switchto the Page B (Loopback) pattern for one pattern cycle. Following the switch, the DUT will be in Loopback.

Figure 17: Page Switch to Toggle Loopback Pattern

3.4.4 Check Detector Synchronization

a. In the Detector view, ClickAuto Align to optimize the detector sample point.
 (View → Detector → Auto Align).

Figure 18: Auto Align to Optimize Detector Sample Point

With the DUT in loopback mode, the Detector should be synchronized to the Modified Compliance Pattern that was loaded earlier.

b. **Confirm** Detector synchronization by switching to the Detector view, and confirming that the ERROR DETECTOR box indicates that it is synchronized to the "User" pattern. (Detected: User)

Figure 19: Check that Detector is inSync

3.5 Loopback Tips

- Certain DUTs require a larger amplitude to go into loopback. Increase the DPP amplitude.
- Certain DUTs need to be trained longer with the training pattern. To increase loopback pattern time, toggle from Page A to Page B, then from Page B back to Page A, using the "Page (A) or B" button on the top right of the Generator view. Click the button once, the pattern will switch to pattern B; clicking again returns to Page A
- Certain DUTs require more than one training sequence. This can be accomplished by clicking the Page Switch" button a second time
- If the BER from the DUT is too high, it will look like the DUT is not in Loopback.
 - Try the optimal Rx EQ settings, if known.
 - Try different DPP preshoot/de-emphasis settings.
 - Try PRBS-7 or PRBS-23 patterns.

- Try turning on all the impairments. This can be done on the Stressed Eye view.
- Certain DUTs train during power-up.
 - With the BERTScope Analyzer off, power-up the DUT, and then power-up the Analyzer.
 - Or, train with full stress on.

3.6 BER Testing

With the DUT in loopback and the BERTScope Analyzer synchronized to the Modified Compliance Pattern, the compliance test may now be performed:

Step 1. Perform Compliance Test

- a. **Select** the Detector View. (View \rightarrow Detector)
- b. Reset the Results panel by clicking on the Reset button.

Figure 20: Reset Detector Results

c. **Start** the test by clicking on the Run button.

Figure 21: Click the Run Button to Start Test

- d. **Stop** the test when the Bit count reaches 3 x 1012 bits by clicking on the Run buttona second time.
- e. Verify that the Detector counted no more than one (1) error.

NOTE:

• A 95% confidence at 1E-12 translates into zero (0) errors, running for 6 minutes 15 seconds, or 3E12 bits.

• The user may wish to set the "Run Duration" to 6 minutes, 15 seconds, to have the BERTScope automatically stop the test when the correct number of bits has been evaluated.

4 Appendix A, Stressed Eye Calibration

4.1 Set DPP Clock to Data Skew

To correctly compensate for the delay in the Data Out vs. the Subrate Clock output from the BERTScope, the cable interconnecting the Subrate Out to the DPP125B should be approximately 1.6 meters (60 inches) longer than the cable connecting the BERTScope Data Out to the DPP125B Data In. With the additional cable length providing the rough delay match, use the calibration method described in Figure 25 to fine tune the delay match to ensure optimum DPP timing.

4.1.1 Connection and Configuration

Step 1. Connect the DPP125B to the BERTScope Analyzer.

Figure 22: DPP Timing Calibration Connections

- a. **Connect** the BERTScope Generator's Positive Data Output to the DPP125B Data Input using a cable approximately 0.3 m (12") long.
- b. **Connect** the BERTScope Generator's Subrate Clock Out to the DPP125B Clock In, using a cable approximately 1.8 m (72") longer than the data cable.
- c. **Loop back** the DPP125B Outputs to the Analyzer Error Detector Inputs. This cable length is not critical.
- a. **Enable** SJ.(View \rightarrow Stressed Eye \rightarrow Sine Jitter \rightarrow Enable)
- b. **Set** SJ amplitude to 30 %UI.

- c. **Set** SJ frequency to 50 MHz.
- d. **Enable** RJ. (View \rightarrow Stressed Eye \rightarrow Random Jitter \rightarrow Enable)
- e. Set RJ amplitude to zero. "Intrinsic Limit" will be indicated.

Figure 23: Set Stress Levels

Step 2. Calibrateto remove the Clock to Data delay

a. **Set** the Generator Delay to 125 ps. (View \rightarrow Generator \rightarrow Delay)

Figure 24: Set Generator Delay

b. In the BERTScope Detector view, check for error free operation (click Run to begin error counting). If not operating error free, advance the Generator delay to 183 ps. Verify that the Detector is operating error free at this point. Record the Generator Delay.

- c. Once error free operation is obtained, **find** the boundary between error free and errored operation by *decreasing* the Generator Delay and using a binary search method as shown in Figure 25 below. Record the Generator Delay.
- d. **Return** the Generator Delay to the error free point found in Step 2.
- e. **Find** the boundary between error free and errored operation by *increasing* the Generator Delay and using a binary search as shown in the figure below. Record the Generator Delay.
- f. Set the Generator Delay to the average of the Delay values found in Steps [c] and [e]. Record this Generator Delay value for later use in creating a Calibration Configuration file.

Figure 25: Find Optimum Delay

Step 3. Record Generator Delay value

a. Following completion of the Clock to Data skew calibration, **record** the BERTScope Generator Delay setting for use in the Calibrated BERTScope Configuration file.

4.2 SJ and DPP Amplitude Calibration

4.2.1 Required Equipment

Stress and DPP amplitude calibrations require the following equipment:

- BERTScope BSA85C
- BERTScope DPP125B
- DPO/DSA70000, MSO70000 Real-Time Oscilloscope with SIGTEST installed
- Compliance Base Board (CBB) Main
- Compliance Base Board (CBB) Riser
- Compliance Load Board (CLB)
- Cables, as indicated in diagrams

4.2.2 Test Equipment Connections

Figure 26: Stress Timing Configuration

Step 1. Connect BERTScope to DPP

- a. **Connect** BSA Generator Data Out+ to DPP Data In using the short (12") cable.
- b. **Connect** BSA Generator Subrate Clock Out to DPP Clock In.

Step 2. Configure Compliance Boards

a. **Connect** CBB-Riser to the CBB-Main board, and connect the CLB board to the PCI slot, as shown in the configuration diagram (Figure 26).

Step 3. Configure Differential Mode Interference

- a. **Connect** DPP Data Out +/- to SI Combiner Data.
- b. **Connect** SI Combiner Data Out +/- to Rx Lane 0 +/- In on the CBB-Riser.

4.3 Calibrate DPP Output Amplitude

Step 1. BERTScope Setup

- a. Load the BERTScope Pattern Generator with the user pattern "128 Hi/128 Lo" (View→Generator→Load User File)
- b. **Configure** the BERTScope for Internal Synthesizer, with the Synthesizer set for 8 GHz

Figure 27: Set Internal Synthesizer

Step 2. DPP Setup

a. LoadDPP Configuration "Preset 4" (no pre-shoot, no de-emphasis; PCIe_P4_0dB.dpp) via the DPP control view on the BERTScope (View→DPPControl→Standard Config→Restore Config)

Open ? X Prest Look m PCI Express Patterns * 4* 10 m T	View
More PCIe Compliance Patiente PCIe PC_068_688.dpp PCIe PC_068_688.dpp PCIe PC_068_688.dpp PCIe PC_068_688.dpp PCIe PC_068_688.dpp PCIe PC_068_688.dpp PCIe PC_068_688.dpp	Back
POLe, P2_048_40+48_dop POLe, P3_3558_3558_dop Offs: D mV POLe, P3_048_32558_dop POLe, P3_3558_046_dop Offs: D mV POLe, P4_048_046_dop POLe, P3_3558_046_dop Onto: NV	Forward
-O DATA-	Run
File of type DPP (* dpo) Cancel	Print
Default Directory Dn Screen Keyboard After Isunching the Keyboard, please select the File name edit box to enter Keys	Config
Dataliare 10.000 GHz dB 0 STANDARD CONFIG	Help
Gen 1en 2en Hz 2en 4en Device: CPP_24300 FREQUENCY RESPONSE	Shutdown
Gen: FEBS-7 8,000.01 Mbrt/s Det: FEBS-7 8,000.00 Mbrt/s BER: 0.00E+00	Local

Figure 28: Load DPP Pattern Preset 4

Step 3. RT Scope Setup

a. Set the bandwidth to 13 GHz. (Select Vertical → Vertical Setup → Bandwidth), then select "Apply to All Channels."

Vertical Setup Analog Input	Display	Position 20.0mdiv a Scale	Termination Coupling	Bandwadtin 13 0 GHz Distant Litters (DSIIt) Equad	Channel Deskow	MultiView Zoom
	Units	S0.0mV b		(Digital Filters cood when sample rate at 600.515 and above) Force Constant Sample Rate (Digital there ensured)	Attum Prote	Vertical Zourn
			20 GHz BW not available at all gain settings	Apply To All Charmois	Controls	

Figure 29: Set Bandwidth

b. **Set**Average acquisition.(Select Horiz/Acq→ Horizontal/Acquisition Setup → Horizontal → Average)

Figure 30: Set Average Acquisition

c. **Set** for the Mean Average voltage (Measure \rightarrow Measurement Setup).

Figure 31: Set for Mean Average Voltage Measurement

Step 4. Measure DPP Output Amplitude

a. Select the DPP Control view on the BERTScope Analyzer (View \rightarrow DPP Control) and open the DPP output voltage control by clicking on the Data Out+icon.

Figure 32: Open DPP Output Voltage Control

b. Adjust DPP output voltage to measure 800 mV average amplitude on the oscilloscope:

Figure 33: DPP Amplitude Measured at 799 mV using Real-Time Oscilloscope

Step 5. Record DPP Amplitude Value

a. Following completion of the DPP Amplitude calibration, **record** the BERTScope DPP Amplitude for use in setting the Calibrated BERTScope Configuration file.

4.4 Calibrate Sinusoidal Jitter (SJ)

Step 1. BERTScope Setup

d. **Turn off** all jitter sources.(View→ Stressed Eye → Sine Jitter → Enable; repeat for all enabled sources)

Figure 34: Turn Off Jitter Sources

- e. **Enable** SJ (View \rightarrow Stressed Eye \rightarrow Sine Jitter \rightarrow Enable)
- f. **Set** the SJ amplitude to zero (0).
- g. **Set** the SJ frequency to 100 MHz.
- h. Load the Gen3 compliance pattern (View \rightarrow Generator \rightarrow Generator icon \rightarrow User Pattern \rightarrow Load User File \rightarrow PCI Express \rightarrow PCIe_modified_compliance_lane0.ram)

Step 2. DPP Setup

a. LoadDPP Configuration "Preset 4" (no pre-shoot, no de-emphasis) via the DPP control view on the BERTScope (View→DPPControl→Standard Config→Restore Config)

Figure 35: Load DPP Pattern Preset 4

4.5 Calibrate the Stressed Eye using SIGTEST on the RT Scope

4.5.1 Amplitude Calibration

Calibrate the output voltage of the DPP to 800 mV peak-to-peak.

NOTE: • *The CLB/CBB is not used for this calibration.*

Step 1. BSA Setup

a. Load 128 Hi/128 Lo Pattern from VIEW→Generator→Load User File

Step 2. DPP Setup

a. Load Preset 4 (no preshoot, no de-emphasis) from VIEW→DPP Control→Standard Config→Restore Config From

Step 3. RT Scope Setup

a. Set the maximum sample rate of 50 GS/s and the record length of 10 M points.(Select Horiz/Acq \rightarrow Horizontal/Acquisition Setup \rightarrow Horizontal \rightarrow Average).

1	_	He	orizontal				
	(scontat))	Mode	Sample Rate 50.0GS/s	Resolution 20.0ps	Detay Made Of	Inclusion
	-	0	Automatic	\smile			Zoom
		0	Constant Sample Rate	Scale 20.0µs	Diaration 200µs	Before Record Ref Pt After Record	1000
		•	Manual	the second de			Ext Ref
				Record Length			
				~		Position 50.0%	

Figure 36: Set Record Length and Sample Rate

b. **Set** individual channels to use the most dynamic range of the scope's A/D without clipping by adjusting the Scale knob until the displayed waveform fills at least 75% of the vertical display area

Figure 37: Adjust Oscilloscope Vertical Scale

Figure 38: View of Waveform for Analysis

Step 4. Capture and Save the Baseline Waveform

- a. Capture the waveform by pressing the Run/Stop button on the Oscilloscope.
- b. Upon completion of the capture, save the waveform on the oscilloscope for later use as a baseline for use in the SIGTEST jitter calibration. (File → Save As→ Waveform).

Figure 39: Save the Baseline Waveform

Step 5. Analyze Baseline Waveform with SIGTEST

- a. **Open** the SIGTEST program on the Oscilloscope (Start \rightarrow Programs \rightarrow SIGTEST)
- b. **Browse** to open the saved baseline (.WFM) waveform file.

Figure 40: Locate and Load the Saved Waveform File

- c. **Select** (in the Signal Test dialog):
 - Load and Verify Data File
 - Set Technology = PCIE_3_0_SYS
 - Template File = PCIE_3_8GB_Rx_CAL_Rj
 - Test

Intel File Definings Administration Desidops PCIsCalibration is out motiviting Browner Intel File Sec. 76: Intel File Definition I (Intel File Definition is out motiviting) Intel Type Definition I (Intel File Definition is out	Test Mode CE	M 🔻		
da Fie fair; Des Fie	Data File	Fettings' Administration' Desktop (PC	CleCalbration/aj cal moi.wfm	Browse
Corp File Number Date Type Offerential Technology Corp Settings and Debug Mode Template File Image Settings and Debug Mode FCE_3_GS_Rs_CAL_R Image Settings and Debug Mode Encycle Material 20.000 jps Kenter of Use Template File Encycle Material 1500000 jps	Cida Fie Neg			Bersten
Soci File Hery Developmental Inter Type Offerential Technology CEE_3_6_SYS Template File Spp Settings and Debug Mode RCEE_3_6GB_Rs_CAL_PI Image ample Interval 20.000 pic End Enterval Tectinology	Classic File			Amile
Inter Type Differential Load and Verify Data File Technology TCE_3_0_SYS Template File PCE_3_658_Rs_CAL_R Template File Termatic In File Terma	Door Re files			Device
Technology PCE_3_0_5YS Template Re PCE_3_IGB_Rk_CAL_R Internate Re RCE_3_IGB_Rk_CAL_R Internate R	Data Type	ferential	Load and Verify I	Data File
PCE_3_0_SYS Image and Debug Mode Template File Image and Debug Mode PCE_3_BGB_R_CAL_R Image and Debug Mode emple Method 20000 ps Image and Debug Mode Ample Method 20000 ps Image and Debug Mode End Image and Debug Mode	Technology	15		
Template He PCE_3_8GB_Rk_CAL_R ▼ ample hterval 20.000 ps kenter of Unit Templat In Res Eds	BOOK A A AND		App Settings and Debug I	Mode:
katter of Unit 1500000 Ext	PLE JUSTS			
	Template File PCE_3_SGB_P Semple Interval	20.000 ps	Tet	Y

Figure 41: Select Pattern File and Initiate Test

d. Measure and note the baseline Total Jitter (TJ)

In this example, TJ is 18.2 ps.

Full Test Results Sigtent Full Test Result	Pass!	in E	put pualization		LATER (ep. 1
Worst Total Eve Violations	Marter P Mn.Time	nsen Erns Between Crossove	0 (a).m	Number I	Taling Even
	Max Unit	nterval (ps)	0	Min Unit	interval (ps)
JITTER STATS Min Fre	Width (ps) 106 83631	HMS Jitter (Per	Edge) (p1)	noocou B <mark>J (RM</mark> S)	
Hear Return Fore After Int	0 0326	n Peak Jitter (na)	0	0.86278 Min. Media (1.8000	n Peak Jitter (25)
O Hean Feak to Feak Jitter (p	1) Max Peak (17 19381	o Peak Jitter (os)	0	Min Pinak 0.00000	to: Proik: Attor (co)
TRANSITION EYE Min. Eye Height (mV) (550.50	STATS	NON Min.Ext	TRANSI Height im	TION EY	TE STATS
0.41760	Max Veltage	Min Volt	828	0	Max Voltage
O D26001	Min Bottom Maruno	Min. Top	Margin	0	Min Bottom Marc
Intervention	yew HT	ML Report		arst. Numb	er Wolation

Figure 42: Baseline TJ Measured at 18.2 ps

Step 6. Adjust SJ

- a. Set the SJ frequency to 100 MHz (View \rightarrow Stressed Eye \rightarrow Sine Jitter \rightarrow Frequency)
- b. Adjust the SJ amplitude on the BERTScope at View → Stressed Eye → Sine Jitter
 → Amplitude) and re-select TEST in the SIGTEST home screen until TJ equals baseline TJ+ Specified SJ (12 %).

In this case, the Calibrated TJ is 30.4 ps.

Sigtest Full Test Results	Pass!		Input Equalization	STLE	PEE De l 📃 P
Wont Total Eye Violations	O D	n Passina Eres me Between Crosse	- O	Number	Failing Eyes
Mean Unit Interval (ps) [125 0000165	- O 100	oto nil interval (ps)	- 0	Min Unit	literni (pi)
JITTER STATS Min Ev	e Width (ps) (54.6031 Di dd	8 I KMS Jitter (1	er Ester) (es) = O	RJ (RMS)	
O Heart - Caller &	n) O Mit M	a ellan Peak Jitter (p	0	Min Medi Factors	an Peak Jitter (m)
Mean Peak to Peak Atter (froctor)	01) Max Pe	a <u>k to Peak Jitter (o</u> S	0	Men Perak	to Peak Atter (21)
TRANSITION EV	E STATS 8435	NC Min.	ON TRANS		YE STATS
Min Voltage I a 42000 Min Top Margin	Max Voltage Jo 39600 Min. Bottom. Mart	AD Min T	oltage 90 op Margin	0	Max Voltage J0 41040 Min Bottom Margar
Worst Number Violation) [-0.25408	O D 281		orst Numb	Fo 28829 er Molation

Figure 43: TJ at 30.4 ps

NOTE: • If calibrating to the 0.1 UI CEM specification, it should be ≈10 %UI on the BERTScope Analyzer SJ setting.

Step 7. Record SJ Amplitude value

a. Following completion of the SJ calibration, **record** theBERTScope SJ Amplitude setting for use in creating the Calibrated BERTScope Configuration file.

4.6 Calibrate Random Jitter (RJ)

Using a matched pair of SMA-SMA cables, connect the output of the SI Combiner directly to the input of the Real-Time Scope.

Step 1. BERTScope setup

- a. Loada clock pattern (1010.ram) into the BERTScope Pattern Generator.(View → Generator → Generator → User Pattern → Load User File)
- b. Enable SJ on the BERTScope Analyzer (View → Stressed Eye → Sine Jitter → Enable) and set the Amplitude to zero (0) for baseline jitter (View → Stressed Eye → Sine Jitter → Amplitude).
- c. **Check** to ensure that the Subrate Clock Mode is set to "Stressed Clock." (View→Generator → Subrate → Mode → Stressed)

Step 2. DPP setup

a. LoadDPP Configuration "Preset 4" (no pre-shoot, no de-emphasis) via the DPP Control view on the BERTScope Analyzer. (View→DPP Control→Standard Config→Restore Config)

Step 3. RT Scope Setup

a. Set the maximum sample rate of 50 GS/s and the record length of 10 M points(see Figure 36). Select Horiz/Acq→ Horizontal/Acquisition Setup → Horizontal → Average

(Instructed	Mode	Sample Rate 50.0GS/s	Resolution 20.0ps	Oetay Mode Of	Hortzontal Zoem
	Constant Sample Rate	Scale 20.0µs	Duration 200jn	Ref Pt Aller Record	Ext Ref
		Record Length 10000000		Position 50.0%	

Figure 44: Set Record Length and Sample Rate

Step 4. Adjust RJ

- a. Analyze the waveform just captured using SIGTEST, configured as follows:
 - Set Technology = PCIE_3_0_SYS
 - Template File = PCIE_3_8GB_Rx_CAL_Rj

b. **Alternately, adjust** the BERTScope Analyzer RJ and RUN SIGTEST Analysis until the measured value for RJ is greater than or equal to the recommended RJ calibration value of 2.5 ps RMS.

Step 5. Record RJ Amplitude value

a. **Record** the BSA SJ Amplitude setting after completing RJ calibration, for use in setting the Calibrated BERTScope Configuration file.

4.7 Calibrate Differential Mode Interference

4.7.1 Configuration for Differential Mode Interference Calibration

Figure 45: Setup for Differential Mode Calibration

Step 1. BERTScope Setup

- a. **Turn off** (disable) all jitter sources (View \rightarrow Stressed Eye).
- b. Set the Pattern Generator to "All Zeros." (View → Generator → Generator → Pattern → All Zeros)

c. Set Sine Interference frequency to 2100 MHz (View → Stressed Eye → Sine Interference → Frequency) and the amplitude to approximately 100 mV (View → Stressed Eye → Sine Interference → Amplitude).

Step 2. RT Scope Setup

a. Set Average acquisition. (Select Horiz/Acq→ Horizontal/Acquisition Setup → Horizontal → Average)

Figure 46: Set Average Acquisition

a. **Select** the peak-to-peak voltage measurement (Measure \rightarrow Measurement Setup).

	Measurements				
umpl	Amplitude	RMS	Max		
ime		N	N		
tore	AC RMS	High	Min		
stog	Alic	(m)	S		
1	Pk-Pk	Low			
1	(N)	(nr)	More		

Figure 47: Set for Peak-to-Peak VoltageMeasurement

b. **Measure** the average peak-to-peak voltage.

4.8 Calibrate Sinusoidal Interference

Step 1. Adjust the Sine Interference Amplitude

Adjust the Sine Interference amplitude on the BERTScope Analyzer to get a calibration value greater than or equal to the specification (≥ 15 mV for CEM). In Figure 48, the RT Scope measurement is 16 mV.

Figure 48: Measure Average Peak-to-Peak Voltage

Step 2. Record SI Amplitude

a. Following completion of the Interference calibration, **record** theBERTScope SI Amplitude setting for use in setting the Calibrated BERTScope Configuration file.

4.9 Eye Height and Eye Width Calibration

A final calibration of the eye opening is performed by looping the stressed data pattern through the appropriate compliance boards, and evaluating the resulting eye opening using the RT Scope and SIGTEST software. For this step, the SIGTEST analysis includes the embedded channel appropriate for the Host (System) or add-in card configuration.

4.9.1 Configuration for Host (System) Calibration of Eye Height/Width

Figure 49: Equipment Setup for Host (System) Eye Height/Width Calibration

- Gen 3 CBB Riser Rx Lane O Tx Lane 0 Gen 3 CBB (Main) Gen 3 CLB SI Combiner Out 12 To RT Scope for calibration 0-0 72 n
- 4.9.2 Configuration for AIC Eye Height/Width Calibration

Figure 50: Equipment Setup for AIC Eye Height/Width Calibration

- 4.9.3 Eye Height/Width Calibration Procedure
 - 1. Load the BERTScope Configuration file previously stored in step 3 of section 4.3
 - 2. **Set** Pre-shoot to +3.5dB and de-emphasis to -6dB(Preset #7)
 - 3. Set the Scope per the settings previously used in Section 4.5.1, Step 3

- 4. **Capture** and save the waveform per the procedure previously used in Section 4.51, Step 4
- 5. **Open** SIGTEST and post-process the captured waveform using the Technology and Template files appropriate for AIC or Host (System) calibration
 - Set Technology=PCIE_3_0_CARD
 - Template File = PCIE_3_8GB_Multi_CTLE_DFE
- **NOTE:** These files will include the required embedded channel appropriate for the test being performed (Host (System) or AIC. At the time of this writing, the template and technology files are still evolving. Please check with the PCISIG to ensure that you have the latest version of SIGTEST.
 - 6. Note the Eye Height and Eye Width numbers that SIGTEST reports

NOTE: • For Eye Height measurement, use the lesser of transition eye height and nontransition eye height.

Sigtest Full Test Result	Pass!	Input Equalization
Worst Total Eve Volation Data Bate (GU/s) 1 30000	Mo. Time. Between T1232114	Cosserent las)
Heart Unit, Internal das)	- O III	O Fill
TIERSTALS	WINTER DR. FOR EAST	eter (Per Love) (ps)
14.0.E.12 [10.16305	D. 64	BL (RMS) [0.16271
A syle and the	O Nu Metter Perk J	(May Meeting Peek Affect (a)
Here, Peak to Presk After	Max Peak to Peak.	Atter land
TRANSTION EV Min Event Londs (anV) [15] Min Voltage	E STAIS	NON TRANSITION EYE STATS Min Eve Jihon Ewe (575 50716 Min Yokase May Yok
Min Top Marsen	Min Datio Marsin	An Teo Haran Min Bottom Man
Wordt Number Violation	Yow Hills Page	Worst Number Wolation
		\checkmark
	2	

Figure 51: Transition Eye Height and Non-Transition Eye Height

- Eye width target is 46ps for Host (System) receiver test.
- Eye widthtarget is 41ps for Add-In Card receiver test.

- If the numbers reported by SIGTEST are different, adjust the RJ on the BERTScope (View → Stressed Eye → Random) and re-run SIGTEST until the desired value for eye width is reached. Typically, the RJ will need to be reduced to meet the specified eye width.
- 8. With the Eye Width calibrated, **note** the Eye Height Measurement. The lowest of the Transition and Non-Transition values for eyeheight should be used to establish the following target values:
 - a. Host (System): 50 mV (+0, -15 mV).
 - b. Add-In Card: 46 mV (+0, -15 mV)
- 9. If the results fall outside this range, **adjust** the Sine Interference amplitude on the BERTScope Analyzer to get a calibration value within the range identified.
- 10. **Note** the modified values for RJ and SI, for use in creating the Calibrated Configuration file.

4.10 Create Calibrated Configuration File

Step 1. Load PCIe Baseline Configuration File

a. From the BERTScope local control interface, **select** CONFIG →Restore Configuration. Select the file PCIe3_Uncalibrated_Baseline.cfg

Step 2. Modify Settings

From the settings recorded during the calibration process, modify the BERTScope configuration as follows:

- a. Set the Generator Delay (View \rightarrow Generator \rightarrow Delay) to the value noted at the end of the DPP Clock to Data Skew calibration
- b. Set the DPP Amplitude (View → DPP → Data → Amplitude) to the value noted at the end of the DPP Amplitude calibration
- c. Set the Sinusoidal Jitter Amplitude (View \rightarrow Stressed Eye \rightarrow Sine Jitter \rightarrow Amplitude) to the value noted at the end of the Sine Jitter calibration
- d. Set the Random Jitter Amplitude (View → Stressed Eye →Random → Amplitude) to the value noted at the end of the Random Jitter calibration
- e. Set the Sinusoidal Interference (View \rightarrow Stressed Eye \rightarrow Sine Interference \rightarrow Amplitude) to the value noted at the end of the Sinusoidal Interference calibration

Step 3. Save Calibrated Configuration File

a. Save a new Configuration file for later use in setting up the equipment for Compliance testing. Go to Config→ Save Configuration, and assign an appropriate file name, such as PCIe3_Calibrated_Config_mm_dd_yy.cfg. Separate calibration files will be required for AIC and Host.

The calibration process is now complete.

5 Appendix B: Optional 100 MHz Multiplier Configuration

5.1 Equipment Configuration

If required for Host (System) testing, two CR units may be used to provide the clock multiplication from the 100 MHz provided by the host, to the 8 GHz full rate clock supplied to the BERTScope Pattern Generator and Detector.

Figure 52: Two CR Units Configured as 100 MHz to 8 GHz Multiplier

5.2 Equipment Settings

- CR 1 (100 MHz In):
 - Set Loop Bandwidth to 1 MHz
 - Set Peaking to 0 dB
- CR 2 (8 GHz out):
 - Set Loop Bandwidth to 10 MHz
 - Set Peaking to 0 dB

6 Appendix C: Abbreviations and Acronyms

AIC	Add-In Card
ATX	Advanced Technology eXtended motherboard form factor specification
BSA	BERTScope Analyzer, BSA85C
CBB	Compliance Base Board
CEM	Card Electro-Mechanical specification (for PCI Express Add-In Cards)
CLB	Compliance Load Board
CR	BERTScope Clock Recovery, CR125A
DMI	Differential Mode Interference
DJ	Deterministic Jitter
DPP	BERTScope Digital Pre-Emphasis Processor, DPP125B
Gen3	PCI Express Generation 3.0
ISI	Inter-symbol interference
PCIe	Peripheral Component Interconnect Express
RJ	Random Jitter
SI	Sinusoidal Interference
SJ	Sinusoidal Jitter
SMA	Sub-Miniature Type A connector
STR	BERTScope Analyzer Option STR, Stressed Eye
TJ	Total Jitter
UI	Unit Interval